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In this paper we investigate numerically the periodic, axisymmetric response of a liquid 
annulus enclosed in a revolving cylinder and subject to a periodic axial excitation 
within the range of the natural frequencies. We use a description which employs as 
solution variables the transverse component of the vorticity vector, the scalar stream 
function and the transverse velocity component, as well as the position of the free 
surface. The acceleration due to gravity is neglected, whereas friction and surface 
tension are taken into account. At the fixed walls the no-slip condition is fulfilled except 
at points on the contact line. At the contact line the slip condition is applied. The 
solution of this problem is achieved using the spectral method in the time direction and 
finite differences in the space direction, whereby surface-adapted coordinates are 
utilized. Far away from the walls the computational results show good agreement with 
results obtained from a linearized theory assuming an inviscid liquid, while at the walls 
boundary layers are generated. 

1. Introduction 
Rotating fluids are not only of scientific interest per se, but are of importance also 

in nature and technical applications. Galaxies as well as some planets can be considered 
as examples of rotating fluids, and the atmosphere and the oceans of the Earth are 
rotating fluid systems. With respect to technical applications rotating fluids occur in 
centrifuges, in the hollow shafts of liquid-cooled turbines, in the spin stabilization of 
rockets, and in zone-melting processes of monocrystal growth. 

Rayleigh (1892) determined theoretically the instability limit for the existence of 
cylindrical bubbles for vanishing volume forces. Experimental studies had already been 
carried out by Plateau (1873). These experiments were repeated by Mason (1970), who 
found very good agreement with theoretical results. The stability of rotating menisci, 
subject to reduced gravity, was investigated by Seebold & Reynolds (1965), who 
showed under what circumstances defined liquid configurations are possible. In the 
course of their investigations they also studied the case where the gas volume connects 
the two solid end plates of a cylindrical container, i.e. an annulus. 

Miles (1959) examined the natural oscillations of a liquid with a free surface in a 
cylindrical tank rotating about the axis of revolution and the response of this 
configuration to a harmonic excitation perpendicular to the axis of revolution. Miles 
& Troesch (1961), and Kollmann (1962), published research on the natural oscillations 
of such systems, applying a linearized inviscid theory and neglecting surface tension. 
In particular Miles & Troesch demonstrated the existence of radial nodes which occur 
only if the Coriolis acceleration is taken into consideration. These authors were 
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interested in the behaviour of liquid-filled rotating rockets while Kollmann studied 
the oscillatory behaviour in liquid-cooled hollow shafts of gas turbines. 

Motivated by the problem of nutational damping of spin-stabilized satellites in orbit, 
Bauer (1980) studied the oscillations of immiscible fluids in an infinitely long 
rotating circular cylinder. He employed a non-viscous two-dimensional theory in the 
(r,  $)-plane and neglected surface tension. The eigenfrequency equations and the 
response of such fluid systems to radial and transverse excitations were calculated. In 
a subsequent paper, Bauer (1981) extended his analysis, taking into account surface 
tension in order to predict the occurrence of waves which have a disturbing effect on 
crystal growth in melts supported by surface tension (interfacial tension). For the 
equilibrium configuration he gives stability limits and confirms a result reported by 
Hocking & Michael (1959) for the special case of rotating liquid columns. If viscosity 
is taken into consideration the stability limits exhibit a different course as shown by 
Hocking (1960) and Gillis (1961). 

Experimental work on the stability of rotating liquid bridges was carried out by 
Carruthers & Grasso (1972). They determined the maximal stable lengths of such 
bridges and compared their findings with those of Hocking and Gillis. 

Theoretical studies by Bauer (1982a, b) are devoted to the determination of the 
natural frequencies of rotating fluid systems in a cylindrical arrangement by applying 
an inviscid three-dimensional theory with surface tension taken into account. 
Furthermore, Bauer (1984) calculated the natural damped frequencies of an infinitely 
long column of immiscible viscous liquids. 

The response of liquid systems contained in a closed rotating cylinder spinning about 
the axis of revolution is the subject of experimental investigations by Chun et al. (1987) 
and Raake (1991). They found excellent agreement between experimentally and 
analytically determined eigenfrequencies. However, a symmetric deviation with respect 
to higher eigenvalues was noticed. 

Numerical calculations of flows having a free surface were done for the first time by 
Harlow & Welch (1965). They applied the MAC-method, again neglecting surface 
tension. A technique for including surface-tension effects was described by Daly (1969). 
However, an accurate determination of the free surface was not possible because 
computations were carried out by utilizing a fixed Cartesian coordinate system. This 
can be remedied by using grids adapted to the surface, e.g. Hirt, Amsden & Cook 
(1974). Ryskin & Leal (1984) use orthogonal surface-adapted grids which simplified the 
boundary conditions. 

Whereas the methods mentioned hitherto employ finite differences, Balasubra- 
manian (1990) developed a finite element method, using a mixed Euler-Lagrange 
representation. He studied waves in different geometries, again neglecting surface 
tension effects. 

Veldman & Vogels (1984) dealt with the response of a rotating liquid-gas 
configuration in a rotating cylindrical vessel under low-gravity conditions and different 
excitations. They make use of the SOLA-VOF method, described by Hirt & Nichols 
(1981), assuming an axisymmetric flow field and adding the impulse equation in the 
transverse direction. For a harmonic excitation with the eigenfrequency they determine 
the transient state of the configuration and note good agreement with the analytically 
determined eigenfrequency. 

In the present work the behaviour of a liquid with a free surface is investigated. The 
system is in a periodic state and subject to a periodic excitation. A numerical procedure 
has been chosen which allows the oscillatory behaviour in the periodic state to be 
determined without the examination of the transient state. This is accomplished by 
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application of the spectral method in the time direction and use of the finite difference 
method in the space direction, employing a surface-adapted unsteady grid. Spectral 
methods in the space direction have been successfully used in many problems, while 
the application of this method in the time direction is unusual (Fletcher 1984; Cannuto 
et al. 1988). 

In the course of the development of the solution it turned out to be advantageous 
to apply computer algebra systems such as presented for example in a survey article by 
van Hulzen & Calmet (1982). In our study the system REDUCE was utilized (cf. also 
Rayna 1987 and Hearn 1983). 

2. Governing equations 
Let us consider (figure 1) a cylindrical vessel of height h and radius b enclosing a 

liquid and a gas. The liquid fills a hollow cylinder of height h, hence the latter has a 
reduced inner radius r and an outer radius b. The fluid system revolves with a constant 
angular speed 0 about the axis of revolution of the vessel and, in addition, is subject 
to an acceleration A cos(0, t )  in the axial direction, with A the amplitude of the 
excitation, 0, the excitation frequency and t the time. The shape of the generated free 
liquid surface can be described by the distanceflz, t )  from the outer radius of the vessel, 
where z denotes the axial distance of a cylindrical coordinate system. Furthermore, we 
suppose that the flow within the vessel is axisymmetric. Provided that the viscosity and 
the density of the gas are negligible in relation to the material constants of the liquid, 
the problem under consideration can be simplified by postulating a gas with constant 
pressure and vanishing viscosity and density. 

The liquid is assumed to be incompressible, having a constant density p. It is also 
assumed to be a Newtonian fluid with a constant kinematic viscosity v. At the interface 
between the liquid and the gas a surface tension T,, acts, which is assumed to be 
constant over the interface. 

In what follows, and with the liquid properties just mentioned, a mathematical 
model for the treatment of the flow field resulting from excitation in the range of 
eigenfrequencies (natural frequencies) is presented. 

2.1. Diferential equations within the fluid interior 
The Navier-Stokes equations in a rotating reference frame can be written in the form 
(see e.g. Greenspan 1969) 

au 1 
-+$V(u.u) + (V x u) x u+ 252 x u+61 x (52 x r )  = -- V p + F -  vV x (V x u), (1) 
at  P 

where u, with components u, u, w in a cylindrical coordinate system (0; r,  q5, z), denotes 
the velocity vector a fluid particle at the position r, i2 is the constant angular velocity 
of the rotating coordinate system and p is the pressure. F is a volume force which is 
generated by the accelerations of the coordinate system. Furthermore 252 x u is the 
Coriolis acceleration and 61 x (a x r)  the centrifugal acceleration. 

Next the dimensional quantities can be made dimensionless via 

r = Lr*, u = Uu*, t = 0 - ’ t * ,  p = pQULp*, (2) 

with L (e.g. h) a characteristic length of the configuration, and U a characteristic 
velocity. Furthermore 52 = Qk, with k the unit vector in the direction of the axis of 
revolution. 
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FIGURE 1.  Geometry of the rotating fluid system; notation. 

Thus 

au 
at 
-+ Ro[~grad(u.u)+(curlu) x u]+2k x u+k  x (k x r) 

= gradp+F-Ekcurl(curlu), (3) 
where the asterisks have been omitted. The dimensionless numbers Ek = v/s2L2 and 
Ro = U/OL are the Ekman number and the Rossby number, respectively. 

Since the motion of the fluid is determined by a resonance condition, a priori there 
is no characteristic velocity. The latter results from the response behaviour of the liquid 
only. Hence we postulate U = O/L,  so that Ro = 1. The incompressibility condition 
yields divu = 0. 

As mentioned previously, for the representation of the flow field we employ 
cylindrical coordinates with axial distance z, radial distance normal to the symmetry 
axis r, and azimuthal angle 9. Because of the assumption that the fluid configuration 
is axisymmetric, there is no azimuthal dependence of the variables, i.e. for each 
arbitrary quantity g we have i?g/a@ = 0. Thus the continuity equation reads 

au aw u -+-+- = 0. ar az r (4) 

Applying the curl operator to (3), the pressure can be eliminated and on making use 
of the vorticity vector o = curl u, the vorticity transport equation results. Defining the 
vector potential Y as u = curl Y, the continuity equation is satisfied identically. Hence 
there follows after some standard manipulations 
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where the superscript T denotes the transpose. The vorticity vector reads 

From this we recognize that a mixed representation turns out to be useful by keeping 
the +component of the velocity (v) and utilizing the $-components only from the 
vorticity vector and from the vector potential. Thus the scalar field w,  following from 
(6),  is given by 

(7) 
au aw 
az ar 

0 = ---. 

Furthermore it is appropriate to introduce a scalar function $ (Stokes stream function 
for axisymmetric flow) given by $ = rY+.  

Hence we get for the velocity components u and w the expressions 

From that one obtains: 
the $-component of the Navier-Stokes equation 

the vorticity transport equation 

and the stream function-vorticity equation (resulting from (7) and (8)) 

2.2.  Boundary conditions 
The no-slip condition at the rotating vessel requires 

If we put $ = 0 at the fixed walls, we see that (12a, c) are fulfilled. Referring to the 
stream function-vorticity (11) and the boundary conditions (124 c), we find at the 
upper and lower solid plates 

at z = O  and z =  1, 1 a2$  w = 
r2 az2 

whilst in the lateral area we obtain 

1 a2$ 
w = - - -  at r = b .  

r ar2 

At the free liquid surface (liquid-gas interface) 
r = b - f  
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we assume impermeability. Now for a moving surface we can write n.(u-w) = 0 (see, 
e.g. Becker & Burger 1975) if the free surface is considered as a surface of discontinuity. 
In this equation the unit normal vector (pointing in the direction out of the liquid) is 
given by 

and the velocity vector of the free surface is 
T .=(-%, af 0,o) . 

The velocity vector of a liquid particle at the free surface is u. Hence the impermeability 
condition takes the form 

af af 
at aZ 

u + - + - w  = 0. 

For the derivative in the direction of the free surface we get from (18) 

au afau ay ay ay- +-+-w++- 
az azar azat a.2 az 
---_ (19) 

Substitution of (8), (15), (16) and (17) into (18) yields the impermeability condition at 
the free surface with respect to the functions to be determined: 

Next we have to consider the equilibrium of stresses at the free surface. This condition 
is given by (see, e.g. Landau & Lifshitz 1987) 

n - n  = T,,2Hn, (21) 
where cr denotes the stress tensor, T,, the liquid/gas surface tension coefficient 
(assumed to be constant), and H the mean curvature of the free surface. The 
components of the stress tensor in cylindrical coordinates may be found in most 
textbooks on fluid mechanics (e.g. Landau & Lifshitz 1981, p. 48) and thus are omitted. 

For fluid configurations with rotational symmetry we obtain for twice the value of 
the mean curvature 

2H = -[&{ 1 +@y}l/z+g{ 1 +(g)z)-7. 
Multiplication of (21) with the tangent vector 

yields the differential equation 
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for the stress balance in the axial-tangential direction. Furthermore, we get for the 
stress balance in the transverse direction 

As an additional equation we employ the radial component of (21). In dimensionless 
form this equation reads 

au af aw au 2~ [ ar a,( ar az)] we' 
p - E k  2-+- -+- =- 

where We = P L ~ Q ' / T , ~  is the Weber number. Employing (8) gives for the balance of 
the normal stresses (26) and the balance of the axial-tangential stresses (24) 

(27) 

and 

respectively. 
To eliminate the pressure in the balance equation for the normal stresses, (27) can 

be differentiated in the direction of the free surface and accordingly combined with the 
Navier-Stokes equations in the radial and axial directions. Thus 

aP = - r3 -++r3+Ek  
a Z  

Finally we have to formulate a contact line condition. Since for a moving contact line 
the no-slip condition leads to infinitely high stresses, we postulate that in the ( r ,  z)- 
plane the stresses vanish at the contact line, otherwise the no-slip condition (adherence 
condition) holds. This leads to the following boundary conditions between the free 
liquid surface and the vessel wall at the contact line. 

Since the contact lines are located at the plane surfaces (solid end plates) of the 
cylinder, the velocity normal to the wall must vanish (12c). Likewise a w p r  = 0. 
Considering the ( r ,  z)-stress component crrz = y(aw/ar+aw/az) with 7 = vp the 
dynamic viscosity of the liquid, it follows from the stream function-vorticity equation 
that w = 0. 

In addition, putting the stress components vir and a:, (these are the stress 
components without the pressure part; cf. Landau & Lifshitz 1978) equal to zero it 
results from (1 9) that 

aY- 
az a t  
- = 0. 
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This is identical with the assumption that the dynamic contact angle is equal to the 
static contact angle. 

3. Numerical treatment of the problem 
3.1. Transformation to surface-adapted coordinates 

For the numerical solution of the problem we utilize a grid, the upper grid line of which 
is a coordinate line of the free surface. A possible coordinate transformation is shown 
in figure 2. The transformation reads 

6 - r  
r = t ,  c = z ,  g = -  

f(z, 1) ' 
(32a-c) 

with 7 as the time, and [ and 5 as the axial and radial coordinates in the new coordinate 
system, respectively. The new variable is defined in such a way that its value at 
the free surface is one (independent of z )  and its value at the lateral area is zero. 
Thus, employing the extended chain rule the first derivatives of an arbitrary function 
g(g,[ ,  T )  in the non-transformed system are 

Higher derivatives can be generated by successive differentiation of the derivatives of 
lower order. Since the transformation of the differential equations will be performed 
using REDUCE, neither the higher derivatives nor the transformed differential equations 
will be stated here. Further details are documented by Ehmann (1991). 

3.2. The spectral Galerkin method 
In connection with the numerical investigation, only periodic solutions are studied 
without consideration of the initial conditions, i.e. in this work the transient state is not 
dealt with. The fundamental equations set out in §2 are solved approximately in the 
time direction (7) by means of the Galerkin method, using set-up functions which 
correspond to the first terms of a Fourier series. Thereupon the resulting system of 
differential equations depends on 6 and 5 only. These equations are then approximated 
using the finite difference method, which gives a nonlinear system of equations for the 
determination of the discrete flow quantities. 

Generally the differential equations can be cast into the form 

L,(g,(x, 0)  = 0, (34) 

where L, denotes the differential operators of the differential equations and g,  the 
required functions. The points of the physical space D(x),  where the differential 
equations have to be fulfilled, are denoted by x. The boundary conditions at the 
boundary aD are given by 

where A ,  denotes the differential operators of the boundary conditions. For the 
approximate solution of the problem formulated by (34) and (35)  we put 

4 ( g q ( x ,  0)  = 0, (35) 

K 
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C = const. 

FIGURE 2. Representation of the coordinate transformation. 

where the Ago are functions which satisfy the boundary conditions and where the 
spectral set-up (complex Fourier series) 

has been employed. The conjugate is denoted by an overbar. The @, ( t )  are known 
analytic functions (set-up functions) of time, taking into account (32a), and the 
unknown coefficients A,, depend on the position x only. Substitution of (36) into (34) 
yields for the pth differential equation the residue 

A,&) = AQ*o, @,,(t) = eiRAkt (37) 

/ K  \ 

According to the method of weighted residues (MWR) - and the Galerkin method is 
such a procedure -we determine the A,&) by setting 

This is a system of equations for the coefficients A, (x) of the set-up functions. In our 
case the time interval is the oscillation period (2n/#,) and integration with respect to 
time can be carried out analytically. 

3.3. Discretization in the space direction 
For the spatial discretization a finite difference approximation is applied. In doing so 
only computational molecules (difference stars) with a truncation (discretization) error 
of at least the second order are utilized. Moreover the computational molecules at  the 
walls are adapted to the boundary conditions. To describe the flow in domains of 
possible boundary layers properly, the mesh management has to take into 
consideration refined grids. For this purpose grids with an exponential distribution are 
advantageous. Moreover, to avoid a degradation of the truncation error in the 
domains of the refined grid, the latter is transformed on an equidistant grid (see 
Anderson, Tannehill & Pletcher 1984). Thereby new coordinates are again introduced 
which correspond to the counting variables of the grid. They are x in the &direction 
and y in the (;-direction; thus the transformation law is given by 

Application of the chain rule yields the derivatives from the non-transformed 
rectangular coordinate system (6 - 0. These formulae, however, are not reproduced 
here (cf. Ehmann 1991). 

x = x ( 0 ,  y = r(0 (40a, b) 
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grid can be approximated by central differences. Thus 
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According to Anderson et al. (1984) the derivatives used within the now equidistant 

and for the mixed second derivative 

In these formulae the indices i a n d j  denote the counting variables of the grid in the x- 
and y-directions, respectively. 

Derivatives of the third order can be determined by means of Taylor series, but their 
representation will be omitted here. However, it should be pointed out that the first 
derivatives can lead to undesirable waves, if the problem is not dominated by terms 
with second derivatives. These waves arise because of a weak coupling between 
neighbouring grid points. To avoid this phenomenon, asymmetric computational 
molecules will be used, e.g. at the interface (free surface) the first derivative in 6- 
direction reads 

(44) 

since the computational molecules at the free surface protude beyond the free surface 
by one grid point. 

1 
- agi.J+l+$gi..-gi,.,-l +iigt,J-m 

ax i, J - l  

4. Discussion of results 
4.1. The eigenvalue equation 

Since the objective of the present investigation is the periodic response of a rotating 
liquid annulus as a result of a periodic axial excitation, in particular in the range of the 
eigenfrequencies, it is necessary to determine these frequencies. Thereby the eigenmodes 
are defined in such a way that the order of the eigenmode corresponds to the number 
of nodes of a standing wave. As shown by Raake (1991), only odd eigenmodes are 
generated in the axial direction, owing to periodicity and symmetry. 

In order to exemplify and to facilitate the numerical investigation within the 
frequency ranges of the eigenmodes, it is advantageous to utilize a frequency equation 
due to Bauer (1982a,b). This equation is based on a linearized, inviscid theory for a two- 
phase immiscible fluid system and yields two frequency ranges : the hyperbolic range 
(6 < 2Q), and the elliptic range (& > 2Q), where 6 is the eigenfrequency, and 2Q twice 
the angular speed of the rotating cuvette. In the hyperbolic case solutions exist with a 
distinct number of radial nodes, while in the elliptic case no radial nodes exist. 

Because in our case the density ratio of the inner to the outer fluids vanishes and 
because of the assumed rotational symmetry, only eigenvalues of zeroth order in the 
axial direction are determined. Therefore, Bauer's frequency equation reduces to 

rkOXY,(kO) J;(kO)-- - 1 +&(1 -k27)](1 +X)(kO)2J;(kO) Y;(kO)} 
4 '[ pa3Q2k3 '' (1 - k2y)  Ji(kO) f XJ;(kO) 1 + k02J;(kO) Y;(O) 
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with k = b/a ,  y = (nna/h)2, X = B2/y. (46) 
The upper sign in (45) corresponds to the hyperbolic case, the lower sign to the elliptic 
case; n is the number of nodes in the axial direction. J ,  and Y, are the Bessel functions 
of zeroth order, of the first and second kind, respectively. A prime denotes 
differentiation. With respect to the elliptic case the Bessel functions J ,  and Y, must be 
replaced by I,  and KO, where Zo and KO are the modified Bessel functions of zeroth order 
and the second kind, respectively. 

If solutions for I )  are found, the eigenfrequencies can be calculated from 

< 1, hyperbolic case, 

> 1, elliptic case, 

1 

(47a7 b) 
1 + %n,t/Y 

1 

1 -%n,tly 

where the numbers m, n and h designate the revolving (m = 0), the longitudinal (n) ,  and 
the radial ( A )  oscillation modes, respectively. 

4.2. Eigenmode of thejirst order in the axial direction with one and two radial nodes 
Since the behaviour of the flow subject to an excitation by an eigenfrequency in the 
hyperbolic range of the linearized inviscid flow theory is of special interest, the 
temporal development of the flow pattern will be described in the following in some 
detail. For the numerical experiment typical physical data for fluids are used, and the 
cylinder has a diameter of 4 cm and a height of 4 cm and is filled such that the steady 
free surface of the rotating fluid is located at the semi-radius of the cuvette. For that 
configuration the input data are 

Ek = 6.250 x We = 2.133 x lo4; b = 0.5; f = 0.25, 

where the angular speed of the revolving cuvette is lo-' s. If one is interested in the first 
eigenfrequency in the axial direction one notes, along with the solution of the 
eigenfrequency equation, that the hyperbolic case occurs. There are no eigenfrequencies 
with one axial node, the dimensionless frequency of which is w,, > 2. Thus it seems 
particularly interesting to demonstrate the appearance of radial nodes. The application 
of an equidistant grid yielded absurd results. For example in the case of the transverse 
velocities waves occur with a wavelength that corresponds to twice the distance 
between two adjoining grid points. According to Gresho & Lee (1981) this phenomenon 
is possibly due to thin boundary layers having a thickness smaller than the grid 
distance. Hence an exponential refinement of the grid at the walls is utilized as 
mentioned previously. Thereby 50 grid points in the radial direction and 80 grid points 
in the axial direction are employed, where a domain of thickness S = 0.1 with a refined 
grid was taken as a basis. This domain proceeds from fixed boundaries in such a way 
that in the lateral area there are 10 points, while at the plane front plates there are 20 
grid points. Figure 3 shows the development of the flow pattern for an excitation with 
a frequency 6 = 0.395, corresponding to the solution of the eigenfrequency equation. 

Flow pictures for increasing time are plotted over the semiperiod of the oscillation. 
The second half of the oscillation period is then obtained by reflection of the pictures 
in the symmetry plane which is perpendicular to the axis of revolution. A picture 
produced by reflection in this way is assigned to a point of time shifted by a half-period. 

For a better ordering of the flow configurations within the oscillation period a new 
dimensionless time i was introduced related to the old dimensionless time by f = 52, t .  

On the upper left-hand side of each of figures 3(a) to 3(e) the rotating cuvette is 
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FIGURE 3(a-d) .  For caption see facing page. 
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/ / / r ~ \ \ \ \ \ ~ ~ - - - , , , ; , , ,  
/ / / I ! \ \ \ \ , \ .  
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(f) Velocity vector Transverse 
velocity - 2 . 7 0 8 ~ 1 0 - ~  

0.0267 
0.0190 E k = 6 . 2 5 0 ~ 1 0 - ~  

We= 2.133~ 104 0.01 14 
QA=3.951x 10-' 0.0038 
Fz=6.OO0x -0.0038 

-0.01 14 
-0.0190 
-0.0267 

FIGURE 3. Sequence of an eigenmode with radial nodes at times (a) T= 0, (6) 1.571, (c) 2.094, 
(d )  3.142, (e) 5.236. (f) Legend for the velocity vector and transverse velocity fields. 

shown, with the velocity field about the symmetry line (relative transverse velocity) at 
the left, corresponding to the legend in figure 3 0, and the velocity components in the 
(r,  2)-plane at the right in the form of velocity vectors. On the left and the right of each 
cuvette the instantaneous volume force resulting from the axial acceleration of the 
container is marked by a bar in the corresponding direction. The maximal value of this 
force is F, = 6.000 x lop3. To the right of the cuvette an enlarged sector of a small 
domain of the lateral area is shown for a better representation of the flow near the 
walls. The position of the magnified area is framed in the general view. Below these 
representations the boundary layer domain at the end planes is shown magnified, first 
the velocities in the (r, z)-plane, and, beneath, the transverse velocities in this domain. 
It should be noticed that here the magnification corresponds to the flow field to the 
right of the axis of rotation, and so both representations of the transverse velocities 
appear reflected. 
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Starting the discussion of the flow pattern at the time I = 0, one recognizes a radial 
node by observing a reversing of the velocities in the axial direction at a line. At the 
same time the free surface at the upper plane moves towards the symmetry line of the 
container, while at the lower plane the free surface moves away from the symmetry line. 
In the axial direction a node can be determined in such a way that there exists only one 
point at the interface where the velocities in the radial direction reverse. 

Examination of the flow configuration development with time shows a decrease of 
the velocities until, eventually, two radial nodes occur at the moment I = 1 S71. Thus 
there are two lines within the fluid where the direction of the axial components of the 
velocities reverse. This is only possible if these two eigenfrequencies are excited. But 
this means, however, that they occur as immediately adjacent eigenfrequencies. This is 
confirmed by inspection of the zeros of the eigenvalue equation, since the eigenvalues 
for the first and second eigenfrequencies with one axial node only are G = 0.401 1 and 
6 = 0.3951, respectively. The fact that the appropriate eigenmodes become visible at 
different moments results from a phase difference, because the difference between the 
excitation frequency and the eigenfrequencies is large. 

Subsequently the first eigenmode becomes dominant again until, finally, at I = 3.142, 
a flow pattern results which corresponds to a reflection of the flow pattern at the time 
f =  0 at the equatorial plane of the cylinder. Following this the second half of the 
period is traversed. 

Consideration of the velocity fields of the transverse velocities suggests a clear 
connection between the radial velocity component and the Coriolis acceleration, such 
that in domains where the radial component is directed outward, the fluid in the 
transverse direction is subject to a negative acceleration, while a radial component 
directed inward exerts a positive acceleration effect on the transverse velocity 
component . 

The velocity field in the lateral area at all times decreases towards that area due to 
the adherence condition. Here, it must be taken into account that there is no steady 
flow. Thus phase shifts due to damping may appear in the boundary layer domain. It 
should also be noticed that the domain of the eigenmodes varies. Hence the definition 
of the boundary layer thickness is difficult, particularly since the latter changes 
periodically during the development of the flow field. 

Next the velocities at the bottom of the cuvette are discussed. In particular a 
backflow region near the wall at time I =  0 is noticeable, the thickness of which 
decreases in the outward direction until it disappears completely. During the 
subsequent development the fluid in the backflow region is entrained more and more 
by the flow within the interior of the fluid. Hence the end of the backflow region is 
continually transported further inward until eventually at time I =  2.094 the entire 
backflow region has disappeared. It should be pointed out that the flow between the 
domain dominated by the eigenmode and the wall shows a strongly marked maximum 
in the axial direction. An explanation for this is that it results from damping and in 
addition from the influence of the wall on the transversal velocity. Both cause a phase 
shift that can explain the described behaviour. 

The flow pattern at I =  2.094 reveals that a new backflow region originates in 
which the velocities in the interior of the fluid reverse corresponding to the eigenmode. 
Later this backflow region is again transported from the exterior in the direction of the 
free surface of the fluid until finally it vanishes at time f =  5.236. 

With respect to the transverse velocities displayed, their decrease in the direction of 
the wall is seen on one side, and the connection between the Coriolis acceleration and 
the radial component of the velocities is seen on the other side. 
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5. Conclusions 
We have presented a numerical method to examine a problem with a free surface 

using a coordinate system adapted to the surface. Since only the periodic response of 
a rotating liquid annulus subject to an axial harmonic excitation in the range of an 
eigenfrequency was studied, spectral methods were applied in the time direction. In the 
space direction a discrete approximation via the method of finite differences was 
utilized. The computer program was produced to some extent from a program for the 
processing of symbolic data. Numerical results demonstrated good agreement with 
analytical predictions based on a linearized inviscid flow theory. Furthermore 
interesting insights could be acquired regarding the formation of boundary layers. 
Such flow phenomena, however, cannot be explained by means of a non-viscous flow 
theory. 

The authors are indebted to the referees for helpful and constructive comments. 
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